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Testing for correlation structures in short-term variabilities with long-term trends
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We describe a method for identifying correlation structures in irregular fluctuations (short-term variabilities)
of multivariate time series, even if they exhibit long-term trends. This method is based on the previously
proposed small shuffle surrogate method. The null hypothesis addressed by this method is that there is no
short-term correlation structure among data or that the irregular fluctuations are independent. The method is
demonstrated for numerical data generated by known systems and applied to several experimental time series.
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I. INTRODUCTION

In the real world systems are not always isolated from
their surroundings and not always unique. Hence, we often
want to know whether there is some kind of relation among
them or to find similar phenomena elsewhere. This question
is an old one and very important. To investigate this, time
series are often the only clue. Time series usually show ir-
regular fluctuations, and data are often modulated by long-
term trends [see Figs. 1(a) and 1(b)]. When signals are simi-
lar it is not at all unusual to expect that some sort of similar
activity may occur in the systems or there may be correlation
structures between them [1]. On the other hand, there are
cases where time series are not similar. In this case, we may
have the impression that these systems are independent or
have no correlation structure. However, these systems may
be interconnected or interrelated in some way or another to
varying degrees. There is a historical precedent for this. For
example, there is a Japanese proverb: bucket makers become
profitable when winds blow; yet there seems to be no rela-
tion between bucket makers and winds. This proverb means
that even if some events seem to be of no relation at first
glance, these systems are interconnected or interrelated [2].

A simple approach to investigate whether there is some
kind of relation between two signals is to estimate the corre-
lation coefficient. This statistic is effective to investigate
similarities of long-term trends between two signals. How-
ever, it is not effective to investigate the short-term variabili-
ties. Although it is important to know the global relation
(long-term dynamics), it is also important to know the local
relation (short-term dynamics). One of the useful statistics to
investigate whether there are similarities in short-term vari-
abilities is the cross correlation. When the statistic has strong
peaks at some time lags the result is a good indication that
the data have similarities. Then, we expect that there are
correlation structures between the two signals (or that similar
factors may influence both systems). On the other hand,
when the statistic does not have strong peaks we will con-
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clude that there is no similarity. Then, we expect that there is
no correlation structure and that the dynamics of the systems
have a different origin. However, this may not always be true
because “no similarity” is not equivalent to “no correlation.”
That is to say, even when two signals are not similar, there
are still possibilities that these systems have some kind of
correlation structures (that is, these systems are intercon-
nected or interrelated). To investigate this an approach from
the viewpoint of a deterministic dynamical system is neces-
sary. In this paper, we introduce such a method to investigate
whether there are correlation structures in short-term vari-
abilities among data, irrespective of whether data have simi-
lar or different long-term trends.

We first describe a current technique from the viewpoint
of a deterministic dynamical system. Then we describe our
technique. After describing these techniques, we will present
our choice of discriminating statistics. Then, we will apply
this algorithm to several cases using simulated time series
data: (i) data have no trend, (ii) data have the same trends,
and (iii) data have different trends. In each case, the data we
use are both noise-free and contaminated by 10% Gaussian
observational noise.

Based on the numerical experiments, we apply our
method to real-world data. We select two specific systems of
particular interest to us: human postural data (measured dur-
ing quiet standing) of mediolateral and anteroposterior direc-
tions shown in Fig. 1(a), and electroencephalography (EEG),
measured at C, of the unipolor 10-20 Jasper registration
scheme [3], shown in Fig. 1(b). Both the data show irregular
fluctuations and long-term trends. We show that there are
correlation structures in the irregular fluctuations of human
postural data, and there are correlation structures in the ir-
regular fluctuations of EEG data depending on situations.

II. CURRENT TECHNOLOGY: THE RANDOM SHUFFLE
SURROGATE METHOD

Surrogate methods have been proposed to investigate fea-
tures of the data from the viewpoint of deterministic dynami-
cal systems [4]. To investigate whether data can be fully
described by independent and identically distributed (IID)
random variables the random shuffle surrogate (RSS) method
is useful [4]. We can apply the cross correlation to the origi-
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FIG. 1. Behavior of time series examined in this paper: Both (a)
and (b) show irregular fluctuations and long-term trends. (a) is hu-
man postural data (measured during quiet standing) of mediolateral
and anteroposterior directions. The data were measured at 100 Hz.
The subject was healthy, stood barefoot, and had opened eyes. (b) is
healthy human electroencephalography (EEG) data, where S; and
S, are the subject identifiers and the third letter, O and C, identifies
the condition: O=eyes open and resting, and C=eyes closed and
resting. The measurement point is C of the unipolor 10-20 Jasper
registration scheme [3]. Measurements were not simultaneous and
the data were digitized at 1024 Hz using a 12-bit A/D converter.
The EEG impedances were less than 5 K(). The data were ampli-
fied, gain=18 000, and amplifier frequency cut-off settings of
0.03 Hz and 200 Hz were used. The ordinate axis in (a) and (b) is
arbitrary.

nal and RSS data to investigate whether there are correlation
structures. Although the RSS method is effective for time
series with no trends (only irregular fluctuations), the algo-
rithm is ineffective for data exhibiting slow trends because
long-term trends are not preserved in RSS data. That is, ir-
respective of whether irregular fluctuations are modulated by
long-term trends or not, the RSS method can indicate
whether the data have some kind of dynamics, not only
whether the short-term variabilities (irregular fluctuations)
have some kind of dynamics [5].
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Hence, when data exhibit short-term variabilities and
long-term trends, to investigate whether there are correlation
structures in short-term variabilities, we need to destroy local
structures or correlations in short-term variabilities and pre-
serve the global behaviors (trends). In the next section, we
describe a method to generate data that can fulfill such con-
flicting conditions.

III. A DIFFERENT ALGORITHM: THE SMALL SHUFFLE
SURROGATE METHOD

To produce surrogates that we can apply to test data even
if it exhibits different long-term trends, the small shuffle sur-
rogate (SSS) method has been proposed [6]. Furthermore,
the method does not depend on the data distribution. The
SSS method has proven to be effective for tackling data ex-
hibiting short-term variabilities and long-term trends [5-7].

SSS data are generated as follows. Let the original data be
x(7), let i(r) be the index of x(r) [that is, i(f)=tz, and so
x[i(r)]=x(r)], let g(z) be Gaussian random numbers (GRN),
and s(¢r) will be the surrogate data.

(i) Obtain i’ (r)=i(t) +Ag(r), where A is an amplitude (add-
ing GRN to the index of the original data).

(ii) Sort i'() by the rank order and let the index of i’ (r) be

i(r) (rank order the perturbed index).

(iii) Obtain the surrogate data s(r) =x[i(1)] (reorder the
original data with the perturbed index).

We have found that choosing A=1.0 is adequate for
nearly all purposes, and the SSS data are very similar to the
original data [5-7]. In the SSS data, local structures or cor-
relations in irregular fluctuations (short-term variability) are
destroyed and the global behaviors (trends) are preserved.
Further details of the mechanism are provided in Refs. [5,7].
Then, the null hypothesis (NH) addressed by this algorithm
is that irregular fluctuations (short-term variability) are inde-
pendently distributed (ID) random variables (in other words,
there is no short-term dynamics or determinism) [5-7].
Hence, when we apply the SSS method to multivariate data
the NH is that there is no short-term correlation structure
among data or that the irregular fluctuations are independent.

IV. HOW TO REJECT A NULL HYPOTHESIS

Discriminating statistics are necessary for hypothesis test-
ing. After the calculation of the statistic, we need to inspect
whether the NH should be rejected or not.

A. Discriminating statistics

Discriminating statistics are necessary for surrogate data
hypothesis testing. The SSS method destroys local structures
or correlations in irregular fluctuations (short-term variabil-
ity) and preserves the global behaviors (trends). That is, the
SSS data change the flow of information in the irregular
fluctuations. It is preferable to use discriminating statistics
that can reflect features of the surrogate method. Hence, we
choose to use the cross correlation function (CC) and the
average mutual information (AMI) as discriminating statis-
tics. The CC—an estimate of the linear correlation between
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two signals—and the AMI—a nonlinear version of the CC—
can determine, on average, how much one learns between
two signals [8].

We note here that it is widely observed that estimating
AMI is difficult [9]. The major reason is that it is not easy to
estimate the underlying probability distribution reliably. To
reduce this problem a new method has been proposed where
an adaptive partition is applied [10]. However, the SSS data
have the same probability distribution (rank distribution) as
the original data. In this case, we consider that the influence
due to using different data (the original data and the SSS
data) for estimating the joint probability distribution is not
large, and we find that there is not significant bias between
the estimated joint probability distribution of the original
data and the SSS data. Hence, we expect that it is relatively
straightforward to compare the AMI of the original data and
the SSS data.

B. Monte Carlo hypothesis testing

After the calculation of these statistics, we need to inspect
whether a NH shall be rejected or not. If there is sufficient
difference between the original data and surrogate data, the
NH is rejected. In this case, we consider that the original and
the surrogate data would not come from the same population.
If there is no significant difference, one may not reject the
NH. In this case, we consider that the original and the sur-
rogate data may come from the same population.

For this inspection, we employ Monte Carlo hypothesis
testing and inspect whether the estimated statistics of the
original data fall within or outside the statistical distribution
of the surrogate data [11]. When the statistics fall within the
distribution of the surrogate data, we conclude that the hy-
pothesis may not be rejected. In this paper, we generate 99
SSS data and hence the significance level is between 0.01
and 0.02 for a one-sided test with two nonindependent sta-
tistics [12].

Although the multiple-comparison problem is common in
surrogate data applications, we use two discriminating statis-
tics, the CC and the AMI, as complementary statistics. This
is because we have found that a statistic does not work but
the other works well in some test systems [5]. One of the
systems is the logistic map [13]. The logistic map is given as
x(t+1)=4.0x()[1-x(¢)]; we use 5000 data points and the
data is noise-free. We apply the SSS method to the data, and
we use the autocorrelation (AC) and the AMI as discriminat-
ing statistics. While the logistic map has clear nonlinear dy-
namics, the AC of the original data falls within the distribu-
tion of the SSS data, and the AMI of the original data falls
outside the distribution of the SSS data. This result indicates
that only one statistic is insufficient for some cases. Hence,
to avoid this problem we adopt two discriminating statistics,
the CC and the AMI, for our tests. Furthermore, as shown
later, we note that when irregular fluctuations are indepen-
dent or have no correlation structure, both the CC and the
AMI of the data must fall within the distribution of the SSS
data.

Also, we show plots of both the CC and the AMI as a
function of time lag (in other words, the variation of the CC
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FIG. 2. (Color online) Behavior of our numerical data, irregular
fluctuations with no trend, those with trends, and those with other
trends. In this panel, the irregular fluctuations are Gaussian random
numbers and both the long-term trends are artificial.

and the AMI with lag is shown). However, in all cases the
hypothesis testing is robustly conducted for a fixed small
value of lag (for example, lag=1 or —1). In fact, we expect
that it is only a meaningful test statistic for small lag, be-
cause the CC and the AMI of the original and surrogate data
will coincide for large lag. The plots of the CC and the AMI
as a function of lag are provided for information only.

V. NUMERICAL EXAMPLES

We now demonstrate the application of our algorithm to
various simulated time series data, and confirm our theoret-
ical arguments with several examples. Broadly speaking, we
use two types of time series, data with no trend and data with
long-term trends. Furthermore, we use two types of long-
term trends, the same trends and different trends (see Fig. 2).
In all cases, we use A=1.0, for generating SSS data, generate
99 SSS data, the number of data points is 5000, and the data
is both noise-free and subsequently contaminated by 10%
(20 dB) Gaussian observational noise.

A. Data with no long-term trend

The first application is to two scalar time series with no
long-term trend. To study irregular fluctuations that have cor-
relation structures (interconnected or interrelated dynamics),
we use the following models.

(i) The coupled linear autoregressive moving average
(ARMA) model given by

() = 24.0+0.58x(t — 1) = 0.22x(t = 2) — 0.5y(t — 1)
+0.13y(t=5) + 5(z),
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FIG. 3. (Color online) A plot of (a), (c), (), (g), and (i) cross correlation (CC), and (b), (d), (f), (h), and (j) the average mutual information
(AMI), where data have no trend and we use 99 SSS data. (a) and (b) are the coupled linear ARMA model, (c) and (d) are the Ikeda map,
(e) and (f) are a chaotic neural network (CNN), (g) and (h) are Gaussian random numbers (GRN), and (i) and (j) are the x component of the
coupled linear ARMA model and that of the Ikeda map. The solid line is the original data and the dotted lines are the SSS data.
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FIG. 4. (Color online) A plot of CC and AMI, where data have different long-term trends and we use 99 SSS data. The notation is the

same as in Fig. 3.
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y(1) =29.0 - 0.75x(t — 1) + 0.26x(r = 3) + 0.5y(r = 1)
—0.25y(t—2) + (1),

where 7(7) and &(r) are Gaussian dynamic noise with stan-
dard deviation 0.07 [14].
(i) The Tkeda map given by

S, y) =1+ u(x cos 8-y sin 6), u(x sin O+ y cos )],

where 8=a—-b/(1+x*+y?) with ©=0.83, a=0.4, and b=6.0
[15].

In all cases, we use x(z) and y(r) as the observational data.

We also use a more complex model. Many measured
physical quantities can be seen as an average derived from
subsystems or microsystems. However, in the scalar time
series analysis it is assumed to be a single probe of the sys-
tem that is investigated. Also, the ensemble operation can
cancel individuality and make the collective behavior sto-
chastic. One of the examples is EEG. To investigate such a
more complex and practical case, we use a chaotic neural
network (CNN) [16]. The CNN system is given by

n

yilt+1) =ky(1) + > w;izj(t) — az{t) +a,
j=1

Z(t+1) = flye+1)],

where n is the number of neurons, z;,(f) and y,(r) are the
output and the internal states, f is the logistic function f(y)
=1/[1+exp(=y/€)], k and « are the control parameters, and
w;; is the synaptic weight from the jth neuron to ith neuron
[16]. We use 20 neurons to compose the network [17]. The
ensemble mean value x(z) of N neuron is defined as x(¢)
=#Efi1y,~(t), which can be regarded as a simple model of
EEG data. We use two ensemble mean values as the obser-
vational data x,(r)= f—OEl-lfly,»(t) and x,(1)= %Eizfl (1), where
the ten neurons used in one ensemble mean are not used in
another ensemble mean.

As an example of irregular fluctuations where the data
have dynamics but they are independent, we use data gener-
ated by the x component of the linear ARMA model and the
Ikeda map as mentioned previously. Furthermore, to investi-
gate when data have no dynamics and are independent, we
use GRN as irregular fluctuations.

Figure 3 shows the results. When data are GRN or data
are x components of the coupled linear ARMA model and
that of the Ikeda map, both of the CC and AMI of the origi-
nal data fall within the distributions of the SSS data. How-
ever, in other cases (when there are some kind of correlation
structures between two signals), both of the CC and AMI are
distinct. These results indicate that we can discriminate cor-
rectly whether there are correlation structures between two
signals. Here, we note that some differences clearly appear
when the time lag is relatively small, because the informa-
tion in the systems is not retained for longer periods of time.
When the data are contaminated by 10% observational noise,
the results obtained are essentially the same.
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FIG. 5. (Color online) A plot of the CC and AMI for the postural
data: (a) CC and (b) AMI. The solid line is the original data and the
dotted lines are the SSS data.

B. Data with-long term trends

To investigate irregular fluctuations with long-term trends,
irregular fluctuations generated using the same models as
above are added to the artificial trends, where we use two
different trends, trend type 1 and type 2 shown in Fig. 2.
Then, we can investigate when the long-term trends are the
same and different. The level of additional data to the data is
equivalent to 10% (20 dB) observational noise at each case.
Figure 2 shows the behaviors. We show results when irregu-
lar fluctuations have different trends.

Figure 4 shows the results. When irregular fluctuations are
Gaussian random numbers or data are x component of the
coupled linear ARMA model and that of the Ikeda map, both
of the CC and the AMI of the original data fall within the
distributions of the SSS data. However, in other cases (when
there are some kind of correlation structures between two
signals), both of the CC and AMI are distinct. These results
indicate that we can discriminate correctly whether there are
correlation structures between two even when data have
long-term trends. In all cases, especially when the time lag is
larger, behaviors of the CC and the AMI of the SSS data are
very similar to that of the original data. This indicates that
the local structures are destroyed and the global structures
are preserved in the SSS data. When data have the same
trends and data are contaminated by 10% observational
noise, the results are essentially the same.

These results indicate that we can discriminate correctly
whether there are correlation structures between two signals,
irrespective of whether data have the same or different long-
term trends. Therefore, we conclude that applying the SSS
method can detect whether there are correlation structures or
not using the CC and AMI.
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VI. APPLICATIONS

We now present the application of our proposed method
to two experimental systems: (i) human postural data (mea-
sured during “quiet standing”) of mediolateral and antero-
posterior directions shown in Fig. 1(a), and (ii) EEG data
measured at different positions shown in Fig. 1(b). Both the
data seem to have trends. We use 12 000 data points (two
minutes) for the postural data, and 10 240 data points (10 s)
for the EEG data. In all cases we use A=1.0 and generate 99
SSS data.

Figure 5 shows the result of applying the SSS method to
the postural data. The figure shows that although the CC of
the original data falls within the distributions of SSS data,
the AMI falls outside of the distribution. Hence, we consider
that the irregular fluctuations of mediolateral and anteropos-
terior data have correlation structures. This result is in agree-
ment with our understanding because we consider that to
keep standing the posture balance of mediolateral and an-
teroposterior directions is controlled and the interrelation is
necessary.

Figure 6 shows the result of applying the SSS method to
the EEG data. Figures 6(a) and 6(b) show that both the CC
and the AMI of the original data fall within the distributions
of SSS data. This result indicates that the irregular fluctua-
tions of the same subject but under different conditions do
not have correlation structures. Figures 6(c) and 6(d) show
that both the CC and the AMI of the original data fall outside
the distributions of SSS data, where the difference of the
AMI between the original and SSS data is distinct, although
that of the CC is only slightly. As the subjects of the data are
different, these data are not interconnected or interrelated
clearly. The data are measured under the same condition,
eyes closed and resting (these conditions reflect a relaxed
state). As the brains are expected to be idle, similar activity is
expected to occur in both cases. As a result, we consider that
the irregular fluctuations of the data become similar [18].

It should be noted that Figs. 5 and 6 do not show strong
peaks as typified by Figs. 3 and 4. In these cases we cannot
easily decide whether there are correlation structures be-
tween the two signals using the CC or the AMI of only the
original data. Hence, we conclude that our method was ef-
fective to investigate the relation of these data.

VII. CONCLUSION

We have described an algorithm for investigating whether
there are correlation structures in irregular fluctuations of
multivariate time series, even if they exhibit long-term
trends. We have demonstrated the application of this algo-
rithm to computational examples using the CC and the AMI
as discriminating statistics. Our arguments and computa-
tional examples show that this algorithm succeeds in testing
correlation structures in irregular fluctuations irrespective of
whether the data have long-term trends.

PHYSICAL REVIEW E 74, 041114 (2006)

—0.562— “|- 1 1 1 1 1 1 1 L 1
056 5 4 3 -2 -1_0 1 2 3 4 5

-5 4 3 2 1.0 1 2 3 4 5
Time lag

FIG. 6. (Color online) A plot of (a) and (c) CC, and (b) and (d)
AMI for the EEG data: (a) and (b) S;C and S,0 (the same subject
and different conditions), and (c) and (d) S;C and S,C (different
subjects and the same condition). For the explanation of this nota-
tion, see Fig. 1. The solid line is the original data and the dotted
lines are the SSS data.
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